Teaching Einsteinian Physics in Schools is designed to be a resource for primary and secondary science teachers and teacher education students, and anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality.
While Newton saw time and space as rigid and absolute, Einstein showed that time is relative - it depends on height and velocity - and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more!
A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments.
Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
Science doesn't stop moving; our curriculum must also keep up with the times. This book will help teachers convey to our children the fundamental principles of the machinery of our universe- Alan Simon Finkel, AO FAA?FTSE, Australia's Chief Scientist
More than 75 years after his death, Albert Einstein remains a colossal figure in the scientific world, renowned not only for his scientific theories - which underpin almost every aspect of our modern understanding of the cosmos - but also for the?way?in which he thought about physics.? Einstein combined mathematical rigour and logical clarity with a creativity and imagination that helped to revolutionise our concepts of space and time and the very nature of reality.? This outstanding textbook takes the reader on a comprehensive exploration of Einstein's scientific legacy - arguing convincingly that both what Einstein discovered about physics, and how he made those discoveries, should be an essential ingredient of any modern science education- Martin Hendry, Professor of Gravitational Astrophysics and Cosmology and Head of the School of Physics and Astronomy at the University of Glasgow
There is a pressing need to modernise the school curriculum. It is over 100 years since Einstein published his theory of relativity, but it hardly features in school curricula. Perhaps it is because the concepts are complex and we are still finding ways to better teach classical ideas, but unless the curriculum can be modernised there is a danger that it will become outdated and disconnected from the complex ideas that students will encounter at university.? Teaching Einsteinian Physics in Schools is an important book. The authors are experts in both relativity physics and education and this book brings together the evidence of their own experiences and researches collected over many years. I recommend this book to anyone aspiring to bring Einsteinian physics into the classroom- David Sands, PhD, FInstP, CPhys, NTF, PFHEA, Chair, Physics Education Division of the European Physical?Society
?
?