Developed from the authors' graduate-level biostatistics course, Applied Categorical and Count Data Analysis explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals of the methodology without using rigorous mathematical arguments.
The text covers classic concepts and popular topics, such as contingency tables, logistic models, and Poisson regression models, along with modern areas that include models for zero-modified count outcomes, parametric and semiparametric longitudinal data analysis, reliability analysis, and methods for dealing with missing values. R, SAS, SPSS, and Stata programming codes are provided for all the examples, enabling readers to immediately experiment with the data in the examples and even adapt or extend the codes to fit data from their own studies.
Designed for a one-semester course for graduate and senior undergraduate students in biostatistics, this self-contained text is also suitable as a self-learning guide for biomedical and psychosocial researchers. It will help readers analyze data with discrete variables in a wide range of biomedical and psychosocial research fields.
"There is a lot to like about this book. The topics are well written and the issues are clearly explained. ? It covers very well topics that are not traditionally discussed in CDA books and for this reason it certainly is a valuable addition to one's bookshelf. For those who are looking for a book with a focus on applied data analysis (especially from a biostatistics perspective), this is a must-have book. For those who are interested in expanding their knowledge of recent advances in a broad range of CDA tools, [it] will serve you very well."-Australian & New Zealand Journal of Statistics, 2015
"? the book is well-written and for a mathematically oriented reader it should be quite easy to understand the methods introduced. Exercises, combined with practical data analyses, will certainly facilitate the adoption of the material."-Tapio Nummi, International Statistical Review, 2014
"The combination of more advanced and mathematical explanations, newer topics, and sample code from all major software platforms makes this book a valuable addition to the literature on categorical data analysis."-Russell L. Zaretzki, Journal of the American Statistical Association, September 2013